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Abstract 
Introduction Systemic inflammation and endothelial 
dysfunction are potentially modifiable factors impli-
cated in Alzheimer’s disease (AD), which offer poten-
tial therapeutic targets to slow disease progression.
Methods We investigated the relationship between 
baseline circulating levels of inflammatory (TNF-
α, IL-1ß) and endothelial cell markers (VCAM-1, 
ICAM-1, E-selectin) and 18-month cognitive decline 
(ADAS-cog12) in 266 mild-to-moderate AD patients 
from the NILVAD study. We employed individual 
growth models to examine associations, potential 

mediation, and interaction effects while adjusting for 
confounders.
Results The average increase in ADAS-cog12 
scores over all patients was 8.1 points in 18 months. 
No significant association was found between the 
markers and the rate of cognitive decline. Media-
tion analysis revealed no mediating role for endothe-
lial cell markers, and interaction effects were not 
observed.
Discussion Our results do not support the role of 
systemic inflammation or endothelial dysfunction in 
progression in persons with AD.
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Introduction

Alzheimer’s disease (AD) poses a tremendous burden 
on patients and healthcare systems and is in urgent 
need of safe and effective disease-modifying thera-
pies. Therefore, it is crucial to identify potential mod-
ifiable factors that could serve as potential treatment 
targets to slow AD progression. Promising candidates 
among these factors are systemic inflammation and 
endothelial dysfunction [57, 63].

Several studies have suggested a potential role of 
systemic inflammation in AD progression. Mecha-
nistically, systemic inflammation may affect the brain 
through the circumventricular organs, the blood–brain 
barrier, endothelial cell signaling, or the vagus nerve 
[2, 8, 9, 21, 22, 33, 56, 67]. By gaining access to the 
brain, systemic inflammatory cytokines may potenti-
ate neuroinflammation [53, 65] and affect neuron and 
glial cell functioning, tau phosphorylation, amyloid 
beta oligomerization, and breakdown of neurotrans-
mitters into harmful metabolites [15, 43, 45, 48, 51, 
59, 65, 68], possibly leading to cognitive impairment 
[67]. However, although observational studies have 
consistently found elevated inflammatory markers in 
AD [58], the literature on the longitudinal impact on 
cognitive decline is conflicting [23, 24, 32, 40]. Con-
sequently, the role of systemic inflammation in AD 
progression remains to be fully established.

Besides inflammation, vascular pathology may 
also play a role in AD etiology and progression [11, 
30, 34, 66]. Endothelial dysfunction may contribute 
to cognitive impairment via impaired cerebral per-
fusion, increased blood–brain barrier permeability, 
and exposure of the brain to toxic substances, caus-
ing neuronal damage and further brain injury [27, 46, 
69, 70]. Indeed, several studies found that increased 
levels of markers of endothelial dysfunction, such as 
VCAM-1 and E-selectin, are linked to worse cogni-
tive functioning and pathophysiological markers in 
AD patients [25, 34, 42, 70]. However, to our knowl-
edge, the longitudinal relationship between endothe-
lial cell markers and cognitive decline has not yet 
been studied in AD patients.

In addition to their individual effects, systemic 
inflammation and endothelial dysfunction are expo-
sures that are possibly associated in the etiology of 
cognitive decline in AD patients. Increased levels of 
systemic inflammatory cytokines, such as TNF-α and 
IL-1ß, can result in endothelial dysfunction, including 

blood–brain-barrier dysfunction [26, 61, 62], lead-
ing to cognitive decline. Furthermore, endothelial 
and blood–brain barrier dysfunction can be hypoth-
esized to worsen the effect of systemic inflammation 
by increasing access to the brain [67], suggesting an 
interaction effect. Taken together, these observations 
suggest that endothelial dysfunction may mediate and 
moderate the effect of systemic inflammation.

In this paper, we used a prospective cohort with 
a follow-up period  of 18  months to investigate the 
association between the baseline levels of the inflam-
matory markers TNF-α and IL-1ß and of endothelial 
cell markers VCAM-1, ICAM-1, and E-selectin and 
the rate of cognitive decline in patients with mild-to-
moderate AD. Additionally, we assessed the poten-
tial mediating role of the endothelial cell markers in 
the hypothesized effect of the inflammatory mark-
ers and possible interaction effects between them. 
We hypothesized that increased baseline levels of 
systemic inflammation and endothelial cell markers 
would accelerate cognitive decline.

Materials and methods

Study design and participants

Data for this study were derived from the NILVAD 
trial [38, 39]. The NILVAD trial was a phase III ran-
domized controlled study of the effects of nilvadipine 
on cognitive and functional outcomes in 511 mild-to-
moderate AD patients. The results did not suggest a 
benefit of nilvadipine [39]. Blood samples were col-
lected from n = 335 participants who consented to 
the ‘NILVAD blood and genetic biomarker substudy’ 
[49]. Data were collected by 23 academic centers in 
nine European countries: Ireland, the United King-
dom, Italy, the Netherlands, France, Greece, Sweden, 
Germany, and Hungary.

Participants were aged 50  years and older and 
had a diagnosis of probable AD according to the cri-
teria of the National Institute of Neurological and 
Communicative Disorders and Stroke/Alzheimer’s 
Disease [47]. Using the National Institute on Aging- 
Alzheimer’s Association Research Framework, these 
participants would now be classified as Alzheimer’s 
Clinical Syndrome [29]. A complete overview of the 
inclusion and exclusion criteria for the NILVAD trial 
can be found in the study protocol [38]. Recruitment 
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for the study was undertaken locally at each study site 
according to local guidelines and procedures relevant 
to that site [38]. The study was carried out according 
to the Declaration of Helsinki and approved by the 
appropriate National Competent Authorities, Inde-
pendent Ethics Committees, and Institutional Review 
Boards of all participating countries.

Blood biomarkers

This study included the following peripheral mark-
ers: IL-1ß, TNF-α, ICAM-1, VCAM-1, and E-selec-
tin. IL-1ß and TNF-α are both key mediators for the 
inflammatory response. IL-1ß is a pro-inflammatory 
marker that is crucial for host-defense responses, 
while TNF-α is responsible for a diverse range of 
signaling events within cells leading to necrosis 
or apoptosis [28, 44]. The endothelial cell mark-
ers ICAM-1, VCAM-1, and E-selectin are expressed 
in endothelial cells in response to inflammatory 
response (e.g., via IL-1ß and TNF-α). These markers 
mediate the adhesion of leukocytes, including lym-
phocytes and monocytes [10, 31, 37].

Data collection

The participants underwent cognitive assessment at 
baseline, three months, 12  months, and 18  months. 
Cognitive assessment was performed using the Alz-
heimer’s Disease Assessment Scale-Cognitive Sub-
scale 12 (ADAS-cog12), the trial’s primary outcome. 
The ADAS-cog12 ranges from 0–80 points, with 
higher scores indicating worse cognitive perfor-
mance. [55]. Compared to the commonly used mini-
mental state examination (MMSE), the ADAS-cog 
scale is more sensitive, reliable, and less influenced 
by educational level and language skills [41]. Infor-
mation regarding age, sex, years of education, health 
status, and medication use was collected through 
screening of the medical history and measurements of 
the participant’s physical health.

At baseline, 30  mL of blood was collected in 
n = 335 participants [49]. Due to limited research 
funds, serum levels of cytokines (IL-1ß, TNF-α, 
ICAM-1, VCAM-1, E-selectin) were determined in a 
randomly selected subset of n = 268 using high-sensi-
tivity ELISA kits (Puregene® Kits; Gentra Systems, 
Minneapolis, Minnesota, USA) as per the manufac-
turer’s instructions. The plasma samples were stored 

at -80 degrees Celsius at local study sites until the 
end of the NILVAD study and stored centrally after-
ward. A detailed overview of sample handling can be 
found in the blood and genetic biomarker substudy 
protocol [49].

Statistical analysis

We implemented individual growth models [60] 
to relate baseline levels of the inflammatory and 
endothelial cell markers to the rate of cognitive 
decline. Starting from an unconditional means model, 
we first explored which growth curve best fitted 
ADAS-cog12 trajectories. We did so by successively 
adding linear and quadratic growth parameters and 
evaluated the improvement in model fit using devi-
ance statistics (D) for nested models and the Akaike 
information criteria (AIC) value for unnested mod-
els. We used a random intercept and random slope 
to capture the individual differences in ADAS-cog12 
at baseline and over time. After identification of the 
best-fitting unconditional growth models, we added 
the time-invariant predictors (i.e., the markers and 
confounders). The markers (IL-1ß, TNF-α, ICAM-1, 
VCAM-1, E-selectin) were then added to the uncondi-
tional growth model to assess whether they explained 
the between-person variance in ADAS-cog12. These 
models can be used to evaluate the cross-sectional 
and longitudinal relationships between the markers 
and outcome.

To assess the potential of a mediating effect of 
endothelial cell markers, we employed the Baron and 
Kenny method [3]. This approach involved sequen-
tially testing whether 1) inflammatory and endothelial 
cell marker levels individually impact cognitive pro-
gression, 2) inflammatory markers impact endothe-
lial cell marker levels, and 3) the inclusion of the 
endothelial cell marker mediators alters the effects of 
the inflammatory markers. To assess effect modifica-
tion, additional interaction terms between the markers 
were also added. We assessed effect modification by 
evaluating whether adding interaction terms between 
inflammatory and endothelial cell markers affected 
marker estimates in our models.

We adjusted for possible confounders in three 
steps. We first fitted models without any adjustment. 
We then adjusted for only age, sex, and education, 
and, finally, we adjusted for age, sex, education, body 
mass index, diabetes, vascular history, memantine 
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intake, ACE-inhibitor intake, cholinesterase inhibitor 
intake (AchEI2-intake), and nilvadipine intake. Our 
main results are presented for the fully adjusted mod-
els. For the predictors, we standardized all numeric 
variables. The categorical variables, namely sex, 
diabetes, vascular history, memantine intake, ACE-
inhibitor intake, cholinesterase inhibitor intake, and 
nilvadipine intake were not standardized. We also did 
not standardize the outcome: ADAS-cog12. We used 
R software version 4.0.5 with R package lme4 [4] to 
conduct the analysis.

Results

The NILVAD trial included 511 patients, of which 
biomarkers were available in a subset of 268 par-
ticipants. A total of 30 patients (11%) dropped out 
at different moments during this study and did not 
complete the ADAS-cog measurements: one patient 
for medical reasons, one patient for other reasons 
(unwilling, unable, agitated, measurement error), 
and 28 patients for unknown reasons. Out of those 
who dropped out, two patients did not complete any 
cognitive measurements at all and were, therefore, 

excluded from the analyses, resulting in a total of 266 
patients in our analysis.

The baseline characteristics of these 266 patients 
are presented in Table  1. A comparison of base-
line characteristics between patients who dropped 
out of the study and those who did not is presented 
in supplementary Table  S1. Although patients who 
dropped out had higher ADAS-cog12 scores (46 
points) at baseline than those who did not (33 points) 
(p < 0.0001), the inflammation and endothelial cell 
marker levels did not differ significantly between the 
groups (supplementary materials).

The average increase in ADAS-cog12 scores over 
all patients was 8.1 points in 18  months (i.e., 0.5 
points per month; supplementary Figure  S1). The 
range of ADAS-cog12 score changes between base-
line and 18  months spanned from a reduction of 7 
points (minimum) to an increase of 47 points (maxi-
mum). The best fitting model to describe the within-
person changes in cognitive functioning contained a 
fixed and random intercept and fixed and random lin-
ear slope (D = 12,550.8). A model with an additional 
fixed and random quadratic slope was tested but 
did not further improve the fit of the unconditional 
growth model (D = 12,598.3). Consequently, the 

Table 1  Clinical and 
demographic characteristics 
of the study population at 
baseline

All values are mean 
(standard deviation) unless 
otherwise specified

Variable Participants (n = 266)

Female [total number, (%)] 168 (63%)
Age (years) 71.8 (8.1), range: 50–87
Education (years) 16.4 (4.0), range: 9–29
Body Mass Index (kg/m2) 25.5 (4.3)
Nilvadipine group [total number, (%)] 130 (49%)
Heart failure [total number, (%)] 21 (8%)
Diabetes Mellitus [total number, (%)] 16 (6%)
Memantine intake [total number, (%)] 93 (35%)
ACE-inhibitor intake [total number, (%)] 42 (16%)
AChEI2-inhibitor intake [total number, (%)] 234 (87%)
ADAS-cog12 in plaats van ADAS cog12
 ADAS-cog12 in plaats van ADAS cog12 score baseline (points) 34.2 (10.4)
 ADAS-cog12 in plaats van ADAS cog12 score 3 months (points) 35.4 (11.2)
 ADAS-cog12 in plaats van ADAS cog12 score 12 months (points) 40.1 (13.0)
 ADAS-cog12 in plaats van ADAS cog12 score 18 months (points) 42.3 (14.1)
IL-1ß (pg/ml) 0.11 (0.20)
TNF-α (pg/ml) 1.66 (0.66)
ICAM-1 (pg/ml) 339 (127)
VCAM-1 (pg/ml) 438 (164)
E-selectin (pg/ml) 7.11 (3.51)
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change in ADAS-cog12 score was modeled as linear 
growth with time since inclusion in the study.

The associations of inflammatory and endothelial 
cell marker levels with changes in ADAS-cog12 were 
first examined, with all markers added separately to 
the unconditional linear growth model (Table  2). 
None of the inflammatory and endothelial cell mark-
ers were significantly associated with ADAS-cog12 
scores (Table  2). Without covariate adjustments, 
there was a significant effect of TNF-α on a decrease 
in ADAS-cog12, but after adjusting for age, sex, and 
education, this effect was no longer significant (sup-
plementary Tables S2-S3).

Although none of the markers significantly affected 
ADAS-cog12 scores, mediation might still occur 
(e.g., see [19, 20, 35, 52]). Therefore, we next per-
formed the mediation analysis. We first assessed the 
effect of the inflammatory markers on the endothelial 
cell markers at baseline (Table  3). Both TNF-α and 
IL-1ß were significantly associated with VCAM-1 but 
not with E-selectin and ICAM-1.

We then added TNF-α or IL-1ß to the uncondi-
tional growth model with first each of the endothelial 
cell markers separately and then with all the mark-
ers simultaneously (Table 4). Only one of the models 
had a significant marker; namely, the coefficient for 
TNF-α was significant after adjusting for VCAM-
1. However, the coefficient of TNF-α was unaltered 
compared to Table 2, suggesting there was no media-
tion by any of the endothelial cell markers.

Finally, to assess potential interaction effects 
between inflammatory- and endothelial cell markers, 
we also added interaction terms between TNF-α or 
IL-1ß and E-selectin, ICAM-1, and VCAM-1 (sup-
plementary Table S4). None of the interaction coeffi-
cients were statistically significant and barely affected 
the coefficient of TNF-α, suggesting there was no 
interaction between the markers either.

Discussion

The primary objective of this study was to assess the 
associations between baseline levels of inflammatory 
and endothelial cell markers and the trajectories of 
cognitive decline in mild-to-moderate AD patients. 
Consequently, this study focused on AD progression 
rather than its onset. We hypothesized that patients 
with higher baseline marker levels would exhibit 

greater rates of cognitive decline. Contrary to our 
hypothesis, we did not find an association between 
levels of these markers and cognitive decline. Addi-
tionally, we found no evidence of a mediating effect 
of endothelial cell markers, nor any interaction effect 
between these markers.

Previous research yielded mixed findings regard-
ing the effects of inflammatory and endothelial cell 
markers in AD. While elevated TNF-α serum levels 
were associated with a fourfold increase in cogni-
tive decline in AD patients [24], three longitudinal 
studies did not find significant relationships between 
TNF-α or IL-1ß serum  levels and cognitive decline 
[23, 32, 40]. Similarly, while some studies have iden-
tified cross-sectional relationships between plasma 
endothelial cell marker levels and cognitive function-
ing in AD patients [16, 25] and dementia-free older 
adults [7], these relationships were not observed lon-
gitudinally in dementia-free individuals [7]. No prior 
studies had investigated these relationships longitudi-
nally in AD patients.

Our study’s findings contribute to the existing 
literature by suggesting that inflammatory mark-
ers (TNF-α and IL-1ß) and endothelial cell mark-
ers (E-selectin, ICAM-1, and VCAM-1) have nei-
ther cross-sectional nor longitudinal associations 
with cognitive decline in AD patients. One possi-
ble explanation for these results is that we may not 
have measured the most relevant markers. IL-1ß 
and TNF-α are cytokines among many potential 
inflammatory markers, such as IL-6. Addition-
ally, circulating cytokines do not necessarily reflect 
the phenotype of circulating immune cells, which 
may contribute to inflammation even when circu-
lating markers appear normal [36]. Furthermore, 
we focused specifically on patients with mild-to-
moderate AD while these markers might be most 
relevant in earlier disease stages, such as mild cog-
nitive impairment or prodromal stages of AD. The 
follow-up duration of 1.5 years may also be seen as 
too short to detect an effect, even on disease progres-
sion. However, there was a clinically significant rate 
of disease progression in the population we stud-
ied, with an average increase in ADAS-cog12 of 8.1 
points over 1.5 years. In context, a meta-analysis of 
140 AD trials found an annual cognitive decline rate 
of 5.8 points on the ADAS-cog scale [71]. Despite 
these considerations, our findings lead us to tenta-
tively conclude that these markers are not associated 
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with progression. Further research is needed to 
explore a broader range of biomarkers, different 
stages of disease progression, and longer follow-
up periods to fully understand the role of systemic 
inflammation and endothelial dysfunction in AD.

Limitations

The present study has several limitations. Firstly, 
we only studied the effect of baseline marker 
levels on the rate of cognitive decline, while the 
temporal variations in cytokine levels may be 

substantial during disease progression [50]. There-
fore, future studies could take repeated measure-
ments of the markers to assess the potential impact 
of temporal variability and the timing of exposures 
(e.g., inflammatory markers preceding endothelial 
cell markers in time). Secondly, although we found 
comparable inflammation levels with several stud-
ies of AD patients [1, 23, 32, 64], other compa-
rable studies found higher inflammation levels for 
TNF-α and IL-1ß [6, 18, 24, 40, 73]. One possi-
ble explanation for the relatively low levels in our 
samples could be possible protein degradation 
during storage of the frozen samples. In particu-
lar, IL-1ß is known to degrade during long-term 
storage [14]. Moreover, the quantification of IL-1ß 
levels in blood relies heavily on the sensitivity of 
the chosen assay due to its inherently low concen-
tration in blood. Nevertheless, although studies 
report some differences in plasma endothelium 
levels in AD patients, our values are within a simi-
lar range [5, 17, 25, 54, 72], so the possible deg-
radation is likely limited. Thirdly, although AD, 
MCI, and dementia diagnoses were established 
according to the NIA-AA guidelines using clini-
cal, cognitive, and magnetic resonance imaging 
biomarkers, the diagnosis was not confirmed with 
amyloid biomarker evidence,  This means that up 
to 20% of patients included in the trial may not 
have had significant amyloid pathology [12, 13, 

Table 3  The results of fitting individual linear growth models 
with inflammatory marker baseline levels on endothelial cell 
marker levels

Each model was adjusted for age, sex, body mass index, diabe-
tes, education, vascular history, memantine intake, ACE-inhib-
itor intake, AChEI2-inhibitor intake, and nilvadipine intake

Independent variable Dependent 
variable

Estimate p

IL-1ß on ICAM-1 IL-1ß -0.05 0.38 ICAM-1
IL-1ß on VCAM-1 IL-1ß -0.02 0.04 VCAM-1
IL-1ß on E-Selectin IL-1ß -0.04 0.54 E-selectin
TNF-α on ICAM-1 TNF-α 0.06 0.29 ICAM-1
TNF-α on VCAM-1 TNF-α 0.13 0.04 VCAM-1
TNF-α on E-Selectin TNF-α 0.09 0.13 E-selectin

Table 4  The results of fitting individual linear growth models with inflammatory and endothelial cell markers on the rate of cogni-
tive decline (ADAS-cog12)

Each model was adjusted for age, sex, body mass index, diabetes, education, vascular history, memantine intake, ACE-inhibitor 
intake, AChEI2-inhibitor intake, and nilvadipine intake. The estimate is provided for the effect of the independent variable on the 
dependent variable, accounting for the presence of the mediator variable

Independent variable Mediator variable

ICAM-1 VCAM-1 E-selectin

Estimate p Estimate p Estimate p Estimate p

IL-1ß with mediator ICAM-1 IL-1ß 0.01 0.73 0.01 0.87
IL-1ß with mediator VCAM-1 IL-1ß 0.01 0.69 0.02 0.64
IL-1ß with mediator E-Selectin IL-1ß 0.01 0.77 -0.03 0.33
IL-1ß with mediators ICAM-1, VCAM-

1, and E-Selectin
IL-1ß 0.01 0.72 0.003 0.95 0.02 0.72 -0.03 0.31

TNF-α with mediator ICAM-1 TNF-α -0.06 0.05 0.01 0.82
TNF-α with mediator VCAM-1 TNF-α -0.06 0.04 0.02 0.51
TNF-α with mediator E-Selectin TNF-α -0.06 0.06 -0.03 0.40
TNF-α with mediators ICAM-1, VCAM-

1, and E-Selectin
TNF-α -0.06 0.05 -0.002 0.95 0.03 0.55 -0.03 0.39
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39]. We also analyzed a randomized controlled 
trial with an observational approach. This may 
limit the generalizability of our results across the 
mild-to-moderate AD population.

Conclusion

Contrary to our hypothesis, baseline TNF-α, IL-1ß, 
VCAM-1, ICAM-1, and E-selectin were not associ-
ated with accelerated cognitive decline in mild-to-
moderate AD patients. The endothelial cell markers 
did not mediate the effect of the systemic inflamma-
tory markers, nor was there evidence for an interac-
tion effect. Therefore, our results do not support a role 
for systemic inflammation or endothelial dysfunction 
in AD progression.
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